Influence of climate on malaria transmission depends on daily temperature variation

Krijn P. Paaljmans, Simon Blanford, Andrew S. Bell, Justine I. Blanford, Andrew F. Read, and Matthew B. Thomas.

Presented by
P.B.TIRUPATHI PICHIAH
Ph.D., Student
Dept Of Human Nutrition

Lets First Understand What is Malaria?

Malaria is a mosquito-borne infectious disease caused by a eukaryotic protist of the genus Plasmodium.

Widespread in tropical and subtropical regions, including parts of the Americas (22 countries), Asia, and Africa.

250 million cases of malaria/year

Major affected area: sub-Saharan Africa

Commonly associated with poverty
History Of Malaria

First described in India during Vedic Period 1600BC and by Hippocrates some 2500 years ago.

Charaka and Sushrutha gave vivid descriptions of malaria and even associated it with the bites of the mosquitoes.

In 1640, Huan del Vego first employed the tincture of the cinchona bark for treating malaria, although aborigines of Peru and Ecuador had been using it even earlier for treating fevers.

Morton (1696) presented the first detailed clinical picture of malaria and its treatment with cinchona.

Lancisi (1717) linked malaria with poisonous vapours of swamps and thus originated the name malaria, meaning bad air.

Gize (1816) studied extraction of quinine from the cinchona bark.

Pelletier and Caventou (1820) extracted pure quinine alkaloids.

Laveran (1880) a French physician working in Algeria, first identified the causative agent for human malaria while viewing blood slides under a microscope.

P. vivax and P. malariae were identified in 1885 by Golgi.

Sakharov (1889) and Marchiafava and Celli (1890) identified P.falciparum.

Sir Ronald Ross (1897) while working as a military physician in India, demonstrated the malarial oocysts in the gut tissue of female Anopheles mosquito. This was reported in the British Medical Journal.

Paul Muller (1939) discovered the insecticidal properties of DDT.

Curd, Davey and Rose (1944) synthesised proguanil for treating falciparum malaria.

During the World War II research into antimalarials was intensified.

Chloroquine was synthesised and studied under the name of Resochin by the Germans as early as 1934.
Short, Granham, Covell and Shute (England) identified tissue forms of P. vivax in the liver. Tissue stages of P. falciparum, P. ovale, and P. malariae were also identified later on.

Elderfield (1950, USA) synthesised primaquine.

Lysenko (1976-78) formulated a theory on the polymorphism of P. vivax sporozoites.

Bray and Garnham (1982) proposed that some sporozoites in the liver remain latent (hypnozoites) causing relapses later on.

Quinine has now been completely synthesized. Its synthetic analogue is called mefloquine.

In 1967, WHO realized that the global eradication of malaria was impossible for a variety of reasons and the focus shifted to control of the disease.
Global Temperature Map

Life cycle of Malaria Vector:
Climate and Malaria

The three main climate factors that affect malaria are temperature, precipitation, and relative humidity (Pampana, 1969).

Climate predicts, to a large degree, the natural distribution of malaria (Bouma and van der Kaay, 1996).

Temperature

Temperature affects many parts of the malaria life cycle.

The duration of the extrinsic phase depends on temperature and on the species of the parasite the mosquito is carrying (Pampana, 1969).

The extrinsic cycle normally lasts nine or ten days, but sometimes can be as short as five days (Bradley et al., 1987).

As the temperature decreases, the number of days necessary to complete the extrinsic cycle increases for a given Plasmodium species.
P. vivax and *P. falciparum* have the shortest extrinsic incubation times and therefore are more common than *P. ovale* and *P. malariae* (Oaks *et al.*, 1991).

The extrinsic phase takes the least amount of time when the temperature is 27°C (Pampana, 1969).

The time required for development of the ookinete, the egg of the parasite, in the midgut of the Anopheline mosquito, decreases as temperature increases from 21°C to 27°C (Patz *et al.*, 1998).

Below 20°C, the life cycle of *falciparum* is limited. Malaria transmission in areas colder than 20°C can still occur because Anophelines often live in houses, which tend to be warmer than external temperatures.

Larval development of the mosquito also depends on temperature (Russell *et al.*, 1963). Higher temperatures increase the number of blood meals taken and the number of times eggs are laid by the mosquitoes (Martens *et al.*, 1995).

The intersections of the ranges of minimum and maximum temperature for parasite and vector development determine the impact of changes in temperature on malaria transmission.

The minimum temperature for mosquito development is between 8-10°C, the minimum temperatures for parasite development are between 14-19°C with *P. vivax* surviving at lower temperatures than *P. falciparum*.

The optimum temperature for mosquitoes is 25-27°C, and the maximum temperature for both vectors and parasites is 40°C (McMichael *et al.*, 1996). There are some areas where the climate is optimal for malaria and *Anopheles* mosquitoes are present, but there is no malaria.

This is called “Anophelism without malaria” which can be due to the fact that the *Anopheles* mosquitoes present do not feed primarily on humans (Bruce-Chwatt, 1985) or because malaria control techniques have eliminated the parasite.
Precipitation

Anopheline mosquitoes breed in water habitats, thus requiring just the right amount of precipitation in order for mosquito breeding to occur.

Different Anopheline mosquitoes prefer different types of water bodies in which to breed (Nagpal and Sharma, 1995).

Too much rainfall, or rainfall accompanied by storm conditions can flush away breeding larvae.

Not only the amount and intensity of precipitation, but also the time in the year, whether in the wet or dry season, affects malaria survival (Russell et al., 1963).

Rainfall also affects malaria transmission because it increases relative humidity and modifies temperature, and it also affects where and how much mosquito breeding can take place (Pampana, 1969).

Relative Humidity

Relative humidity also affects malaria transmission.

Plasmodium parasites are not affected by relative humidity, but mosquitoes are.

If the average monthly relative humidity is below 60%, it is believed that the life of the mosquito is so shortened that there is no malaria transmission (Pampana, 1969).

Wind

Wind may play both negative and positive roles in the malaria cycle because very strong winds can decrease biting or ovipositing by mosquitoes, while at the same time extending the length of the flight of the mosquito.

During a monsoon, wind has the potential to change the geographic distribution of mosquitoes (Russell et al., 1963).
Daily Temperature Variations - Net Radiation

Diurnal temperature variation is a meteorological term that relates to the variation in temperature that occurs from the highs of the day to the cool of nights.

The net radiation determines whether the surface temperature rises, falls, or remains the same.

net radiation = incoming solar - outgoing IR.

If the net radiation > 0, surface warms (6 AM - 3-5 PM)

If the net radiation < 0, surface cools (3-5 PM - 6 AM)

Factors Affecting Daytime Warming - Fundamental Process.

Heat is transported from the hot surface to air molecules very near the hot surface by conduction.

Heat is then transported further upward by convection - thermals of air.

The layer of air near the earth's surface where most of the daily temperature variation occurs as a result of the heating/cooling of the ground is called the boundary layer (1-1.5Km)
Factors Affecting Daytime Warming

- wind speed
- land type
- humidity
- vegetation cover
- soil moisture
- cloudiness

Night time cooling - radiation inversion

During the night time hours, there is no SW heating the ground, so the ground cools rapidly. Hence, there is heat transfer by conduction from the warm air to the cold ground. This heat transfer occurs in a shallow layer near the ground where air is a poor conductor. A “radiation inversion” is formed: a shallow layer of air near the earth’s surface where the temperature increases with height. The average radiation inversion depth is about 100m, but can vary from 10m - 1 km.

From the Paper:

Reproductive number (R_0),

$$R_0 = ma^2bc e^{-ps}/pr$$

where,
- m = vector:human ratio,
- a = vector biting frequency,
- bc = transmission coefficients defining vector competence,
- p = daily vector survival rate,
- S = the extrinsic incubation or development period of the parasite within the vector, and
- r = recovery rate of the vertebrate hosts from infection.

These parameters relate in some way to mosquito abundance, its biology, or physiology.
Aim:

Role of temperature (constant and fluctuating) in

1. Growth and dissemination of the *P.chabuadi* inside the mosquito.
2. Survival rate of mosquito larva.

* The complete cycle from time of feeding to oviposition (Covell et al 1953).

Results and Discussion

Fig1. Mean monthly temperature and mean monthly DTR throughout Africa for January, April, July, and October. Temperature surfaces were generated by interpolation using weather station data collected between 1960 and 1990. For areas where data records were limited, such as in the Democratic Republic of the Congo, the time period was extended to 2000. The current geographical limits of malaria transmission are illustrated by the dotted lines.
Growth rate and dissemination of *P. chabaudi* malaria in *An. stephensi* mosquitoes under constant and fluctuating temperature regimens. Constant temperatures (dashed red lines) or temperatures with a diurnal temperature fluctuation of ±6 °C (DTR = 12 °C; solid blue lines).

Fig. 3 Interaction plot of the development time and survival of the immature stages of *An. stephensi* under constant compared with fluctuating temperature regimens.

(A) Development time (days, solid lines) and survival (percentage, dashed lines) of mosquito immatures until they reached the adult stage at a constant 20 °C and at a mean temperature of 20 °C but with a diurnal temperature fluctuation of ±6 °C (DTR = 12 °C).

(B) Data from an equivalent experiment at 27 °C. Results are given for three different larval densities (■, 0.5, ▲, 1, and •, 2 larvae/cm²).
Fig. 4. Cumulative percent survival and gonotrophic cycle length of female An. stephensi mosquitoes under constant and fluctuating temperature regimens.

(A) Survival at constant 18 °C (dashed red line) compared with survival at a mean temperature of 18 °C but with a diurnal temperature fluctuation of ±6 °C (DTR = 12 °C; closed blue line). (Inset) The percentage of mosquitoes that completed the gonotrophic cycle on a given day (on the x axis) at constant 18 °C (red bars) compared with completion at a mean temperature of 18 °C but with a diurnal temperature fluctuation of ±6 °C (DTR = 12 °C; blue bars).

(B) Data from equivalent experiments at 24 °C.

The key mosquito-related traits that combine to determine malaria transmission intensity are all sensitive to daily variation in temperature.

ie

1. parasite infection,
2. parasite growth and development,
3. immature mosquito development and survival,
4. Length of the gonotrophic cycle, and adult survival.

Temperature fluctuation increases relative rate processes under cool conditions and slows rate processes under warm conditions.
Limitations:

Used rodent malaria and one species of mosquito need to extend investigations to human malaria species and to other important vectors.

These findings caution against standard practice in studies estimating mosquito and/or malaria climate relations and strengthen arguments for greater ecological understanding of how infectious organisms respond to the natural environment.

What we learn?

Daily temperature fluctuation on basic aspects of insect and parasite life histories suggest the need to consider the role of temperature variation for many ectotherms (other insects, amphibians, reptiles, etc.) and their parasites and pathogens, both for understanding current biology and the likely impacts of climate change.
Beer Consumption Increases Human Attractiveness to Malaria Mosquitoes

Thierry Lefèvre1, Louis-Clément Gouagna1,2, Koumbol Roch Dabire3,4, Eric Elguero5, Didier Fontenille5, François Renuel1, Carla Costantini1,5, Frédéric Thomas1,3,6
1 Laboratoire d’Écologie des Maladies Infectieuses, UMR-CNRS/DIRD 2740, Montpellier, France, 2 Caractérisation et Contrôle des Populations de Vecteurs, PDEV 3156 Montpellier, France, 3 Bioclinic de Recherche en Sciences de la Santé, Bioclinic, Boulogne, France, 4 Laboratoire de Parasitologie et d’Immunologie Moléculaire, Centre Marne Bioclinic, Boulogne, France, 5 Évaluation de Coopération pour la lutte contre les Épidémies en Afrique Centrale, Yaoundé, Cameroun, 6 Unité de Recherche en Écologie et Génétique Végétale, Université de Montréal, Montréal, Canada

Abstract

Background: Malaria and alcohol consumption both represent major public health problems. Alcohol consumption is rising in developing countries and, as efforts to manage malaria are expanded, understanding the links between malaria and alcohol consumption becomes crucial. Our aim was to ascertain the effect of beer consumption on human attractiveness to malaria mosquitoes in semi-field conditions in Burkina Faso.

Methods/Principal Findings: We used a Y tube olfactometer designed to take advantage of the whole body odour (breath and skin emanations) as a stimulus to gauge human attractiveness to Anopheles gambiae s.s. (the primary African malaria vector) before and after volunteers consumed either beer (n = 25 volunteers and a total of 1250 mosquitoes tested) or water (n = 18 volunteers and a total of 1180 mosquitoes tested). Water consumption had no effect on human attractiveness to A. gambiae mosquitoes, but beer consumption increased volunteer attractiveness. Body odour of volunteers who consumed beer increased mosquito attraction (proportion of mosquitoes engaging in take-up and upwind flight) and orientation (proportion of mosquitoes flying towards volunteers’ odors). The level of evoked carbon dioxide and body temperature had no effect on human attractiveness to mosquitoes. Despite individual volunteer variation, beer consumption consistently increased attractiveness to mosquitoes.

Conclusions/Significance: These results suggest that beer consumption is a risk factor for malaria and needs to be integrated into public health policies for the design of control measures.

Malaria Control with Transgenic Mosquitoes

John M. Marshall, Charles E. Taylor*

Figure 1. Illustration for Blocking Malaria Transmission in the Mosquito

Left: Mosquitoes become infected with the malaria parasite upon taking an infected human blood meal. This produces an oocyst in the mosquito gut. Right: Malaria parasites are then amplified and migrate through the mosquito body to the salivary glands, ready to infect a new host. Right: The Laboratory of Vector Biology, Centers for Disease Control and Prevention has identified receptor sites for proteins that are necessary for the waning parasite to pass through the gut wall after the oocyst stage. The same receptors are involved within the passage of sporozoites into the salivary glands. The Laboratory has produced small proteins that pharmacologically incapacitates these sites. Blocking conjugation of parasites through the gut wall and into the salivary glands, the researchers have engineered to make mosquitoes incapable of transmitting the disease to the human population.
ARTICLES

Odorant reception in the malaria mosquito Anopheles gambiae

Allison F. Carey, Guirong Wang, Chih-Ying Su, Laurence J. Zwiebel & John R. Carlson

The mosquito Anopheles gambiae is the major vector of malaria in sub-Saharan Africa. It relies its human hosts primarily through olfaction, but little is known about the molecular basis of this process. Here we functionally characterize the Anopheles gambiae odorant receptor (aOr) repertoire. We identify receptors that respond strongly to components of human odour and that may act in the process of human recognition. Some of these receptors are narrowly tuned, and some salient odours elicit strong responses from only one or a few receptors, suggesting a central role for specific transmission channels in human host-seeking behaviour. This analysis of the Anopheles gambiae receptors permits a comparison with the corresponding Drosophila melanogaster odorant receptor repertoire. We find that odours are differentially encoded by the two species in ways consistent with their ecological needs. Our analysis of the Anopheles gambiae repertoire identifies receptors that may be useful targets for controlling the transmission of malaria.

Malarial Mosquitoes Are Evolving Into New Species, Say Researchers

ScienceDaily (Oct. 21, 2010) — Two strains of the type of mosquito responsible for the majority of malaria transmission in Africa have evolved such substantial genetic differences that they are becoming different species, according to researchers behind two new studies published in the journal Science.

Over 200 million people globally are infected with malaria, according to the World Health Organization, and the majority of these people are in Africa. Malaria kills one child every 30 seconds.

The international research effort, co-led by scientists from Imperial College London, looks at two strains of the Anopheles gambiae mosquito, the type of mosquito primarily responsible for transmitting malaria in sub-Saharan Africa. These strains, known as M and S, are physically identical. However, the new research shows that their genetic differences are such that they appear to be becoming different species, so efforts to control mosquito populations may be effective against one strain of mosquito but not the other.

The scientists argue that when researchers are developing new ways of controlling malarial mosquitoes, for example by creating new insecicides or trying to interfere with their ability to reproduce, they need to make sure that they are effective in both strains.
Malaria may not rise as world warms

Studies suggest that strategies to combat the disease are offsetting the impact of climate change.

Of the many climate-change casualties, one of the most frequently cited — and most alarming — is the spread of infectious tropical diseases. Despite the growing concern over this problem, the anticipated spread of infectious tropical diseases is not necessarily good news, according to a new study published in Nature.

On the surface, the connection between climate change and malaria seems straightforward: higher temperatures are known to boost mosquito populations and the frequency with which they bite. And more mosquitoes bite means more malaria.

Yet a new study from the University of Oxford and the World Health Organization suggests that the incidence of malaria is actually decreasing. The researchers compiled data from a large number of malaria-endemic countries and found that, despite rising temperatures, the incidence of malaria has been decreasing over the past decade.

According to the researchers, the decrease in malaria cases is likely due to a combination of factors, including improved healthcare infrastructure, increased access to antimalarial drugs, and changes in behavior. However, the study also cautions that the decrease in malaria cases should not be interpreted as a sign of improved health outcomes, as many of the factors that have contributed to the decrease in malaria cases are not sustainable in the long term.

The researchers call for continued investment in public health infrastructure and increased access to antimalarial drugs in order to ensure that the decrease in malaria cases is not reversed in the future.